Read a Markdown Table into a Tibble
Arguments
- file
Either a path to a file, a connection, or literal data (either a single string or a raw vector). Files starting with
http://
,https://
,ftp://
, orftps://
will be automatically downloaded.- warn
Boolean. Should warnings be raised if
file
does not appear to be a markdown table? Defaults toTRUE
.- force
Boolean. Should
read_md_table
attempt to read in a table that does not fit the regex? This param should be used carefully as it may causeread_md_table
to return unexpected data. Defaults toFALSE
.- ...
Arguments passed on to
readr::read_delim
quote
Single character used to quote strings.
escape_backslash
Does the file use backslashes to escape special characters? This is more general than
escape_double
as backslashes can be used to escape the delimiter character, the quote character, or to add special characters like\\n
.escape_double
Does the file escape quotes by doubling them? i.e. If this option is
TRUE
, the value""""
represents a single quote,\"
.col_names
Either
TRUE
,FALSE
or a character vector of column names.If
TRUE
, the first row of the input will be used as the column names, and will not be included in the data frame. IfFALSE
, column names will be generated automatically: X1, X2, X3 etc.If
col_names
is a character vector, the values will be used as the names of the columns, and the first row of the input will be read into the first row of the output data frame.Missing (
NA
) column names will generate a warning, and be filled in with dummy names...1
,...2
etc. Duplicate column names will generate a warning and be made unique, seename_repair
to control how this is done.col_types
One of
NULL
, acols()
specification, or a string. Seevignette("readr")
for more details.If
NULL
, all column types will be inferred fromguess_max
rows of the input, interspersed throughout the file. This is convenient (and fast), but not robust. If the guessed types are wrong, you'll need to increaseguess_max
or supply the correct types yourself.Column specifications created by
list()
orcols()
must contain one column specification for each column. If you only want to read a subset of the columns, usecols_only()
.Alternatively, you can use a compact string representation where each character represents one column:
c = character
i = integer
n = number
d = double
l = logical
f = factor
D = date
T = date time
t = time
? = guess
_ or - = skip
By default, reading a file without a column specification will print a message showing what
readr
guessed they were. To remove this message, setshow_col_types = FALSE
or setoptions(readr.show_col_types = FALSE)
.col_select
Columns to include in the results. You can use the same mini-language as
dplyr::select()
to refer to the columns by name. Usec()
to use more than one selection expression. Although this usage is less common,col_select
also accepts a numeric column index. See?tidyselect::language
for full details on the selection language.id
The name of a column in which to store the file path. This is useful when reading multiple input files and there is data in the file paths, such as the data collection date. If
NULL
(the default) no extra column is created.locale
The locale controls defaults that vary from place to place. The default locale is US-centric (like R), but you can use
locale()
to create your own locale that controls things like the default time zone, encoding, decimal mark, big mark, and day/month names.na
Character vector of strings to interpret as missing values. Set this option to
character()
to indicate no missing values.quoted_na
Should missing values inside quotes be treated as missing values (the default) or strings. This parameter is soft deprecated as of readr 2.0.0.
comment
A string used to identify comments. Any text after the comment characters will be silently ignored.
skip
Number of lines to skip before reading data. If
comment
is supplied any commented lines are ignored after skipping.n_max
Maximum number of lines to read.
guess_max
Maximum number of lines to use for guessing column types. Will never use more than the number of lines read. See
vignette("column-types", package = "readr")
for more details.name_repair
Handling of column names. The default behaviour is to ensure column names are
"unique"
. Various repair strategies are supported:"minimal"
: No name repair or checks, beyond basic existence of names."unique"
(default value): Make sure names are unique and not empty."check_unique"
: No name repair, but check they areunique
."unique_quiet"
: Repair with theunique
strategy, quietly."universal"
: Make the namesunique
and syntactic."universal_quiet"
: Repair with theuniversal
strategy, quietly.A function: Apply custom name repair (e.g.,
name_repair = make.names
for names in the style of base R).A purrr-style anonymous function, see
rlang::as_function()
.
This argument is passed on as
repair
tovctrs::vec_as_names()
. See there for more details on these terms and the strategies used to enforce them.num_threads
The number of processing threads to use for initial parsing and lazy reading of data. If your data contains newlines within fields the parser should automatically detect this and fall back to using one thread only. However if you know your file has newlines within quoted fields it is safest to set
num_threads = 1
explicitly.progress
Display a progress bar? By default it will only display in an interactive session and not while knitting a document. The automatic progress bar can be disabled by setting option
readr.show_progress
toFALSE
.show_col_types
If
FALSE
, do not show the guessed column types. IfTRUE
always show the column types, even if they are supplied. IfNULL
(the default) only show the column types if they are not explicitly supplied by thecol_types
argument.skip_empty_rows
Should blank rows be ignored altogether? i.e. If this option is
TRUE
then blank rows will not be represented at all. If it isFALSE
then they will be represented byNA
values in all the columns.lazy
Read values lazily? By default, this is
FALSE
, because there are special considerations when reading a file lazily that have tripped up some users. Specifically, things get tricky when reading and then writing back into the same file. But, in general, lazy reading (lazy = TRUE
) has many benefits, especially for interactive use and when your downstream work only involves a subset of the rows or columns.Learn more in
should_read_lazy()
and in the documentation for thealtrep
argument ofvroom::vroom()
.
Details
read_md_table
reads a markdown table into a tibble from a string,
file, or URL. It uses readr::read_delim
to efficiently read in data.
read_md_table
expects file
to be a raw markdown table. If file
is a
markdown file that contains more than just a table or tables, the table(s)
should be read in with extract_md_tables
instead.
If warn
is TRUE
, read_md_table
will warn if there are potential
issues with the provided markdown table. Depending on the issue,
read_md_table
may still correctly read the table if force
is
TRUE.
readr::read_delim
will provide its own warnings if
there are potential issues.
Examples
# Read from a file
read_md_table(read_md_table_example("mtcars.md"))
#> Rows: 32 Columns: 12
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: "|"
#> chr (1): model
#> dbl (11): mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 32 × 12
#> model mpg cyl disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 Mazda RX4 … 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 Hornet 4 D… 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 Hornet Spo… 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 Duster 360 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 Merc 240D 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 Merc 230 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 Merc 280 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ℹ 22 more rows
# Read from a string
read_md_table(
"| H1 | H2 | \n|-----|-----|\n| R1C1 | R1C2 |\n| R2C1 | R2C2 |",
warn = FALSE,
force = TRUE
)
#> Rows: 2 Columns: 2
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: "|"
#> chr (2): H1, H2
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 2 × 2
#> H1 H2
#> <chr> <chr>
#> 1 R1C1 R1C2
#> 2 R2C1 R2C2
# \donttest{
# Read from a URL
read_md_table(
"https://raw.githubusercontent.com/jrdnbradford/readMDTable/main/inst/extdata/iris.md"
)
#> Rows: 150 Columns: 5
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: "|"
#> chr (1): variety
#> dbl (4): sepal.length, sepal.width, petal.length, petal.width
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 150 × 5
#> sepal.length sepal.width petal.length petal.width variety
#> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 5.1 3.5 1.4 0.2 Setosa
#> 2 4.9 3 1.4 0.2 Setosa
#> 3 4.7 3.2 1.3 0.2 Setosa
#> 4 4.6 3.1 1.5 0.2 Setosa
#> 5 5 3.6 1.4 0.2 Setosa
#> 6 5.4 3.9 1.7 0.4 Setosa
#> 7 4.6 3.4 1.4 0.3 Setosa
#> 8 5 3.4 1.5 0.2 Setosa
#> 9 4.4 2.9 1.4 0.2 Setosa
#> 10 4.9 3.1 1.5 0.1 Setosa
#> # ℹ 140 more rows
# }
# Get warning for malformed tables
read_md_table(
"| Name | Age | City | Date |
|-------|-----|-------------|------------|
| Alice | 30 | New York | 2021/01/08 |
| Bob | 25 | Los Angeles | 2023/07/22 |
Carol | 27 | Chicago | 2022/11/01 ",
force = TRUE
)
#> Warning: ✖ Content in provided `file` does not match the readMDTable regex.
#> ℹ File an issue at https://github.com/jrdnbradford/readMDTable/issues if this
#> warning is in error.
#> Warning: ℹ Attempting to read in content does not match the readMDTable regex.
#> Rows: 3 Columns: 4
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: "|"
#> chr (2): Name, City
#> dbl (1): Age
#> date (1): Date
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 3 × 4
#> Name Age City Date
#> <chr> <dbl> <chr> <date>
#> 1 Alice 30 New York 2021-01-08
#> 2 Bob 25 Los Angeles 2023-07-22
#> 3 Carol 27 Chicago 2022-11-01